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small axial ratio, such as shown by AuSn (Pauling, 
1947), might be assumed by FeSi. The axial ratio could 
adjust itself in such a way that  the silicon atom would 
use its valence of 4 in forming four bonds with the 
surrounding six iron atoms, and the iron atom would 
use its extra valence 2 in forming two iron-iron single 
bonds, one with each of the iron atoms above and below 
it along the c axis. Similarly, the cesium chloride 
structure might be assumed by FeSi, each silicon atom 
then forming eight half-bonds with the iron atoms 
surrounding it in a cubic arrangement, and each iron 
atom forming eight half-bonds with silicon atoms, and 
six one-third bonds with the six adjacent iron atoms. 
I t  seems not unlikely that  co-ordination number 6 
(bond number ~) is more suitable for silicon in an inter- 
metallic compound than co-ordination number 8* (bond 
number ½), and that, moreover, resonating iron-iron 
bonds, with bond number ½, are more stable than non- 
resonating bonds, with bond number 1. The actual FeSi 
structure would thus be preferred to the cesium 

* A substance in which the four bonds of the silicon atom 
show pivoting resonance among eight positions is Mg~Si, with 
the fluorite structure (Pauling, 1948). 

chloride structure for the first reason, and to the nickel 
arsenide structure for the second reason. 

We are grateful to Prof. J. H. Sturdivant for assist- 
ance with the experimental part of this investigation. 
The work reported in this paper is part of a series of 
studies of metals and alloys being carried on with the 
aid of a grant from the Carbide and Carbon Chemicals 
Corporation. 
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The atomic displacements in the transformation from austenite to martensite are described, and 
the strains involved are derived. It  is shown that the tetragonality ofmartensite arises as a necessary 
consequence of the assumption that the iron and carbon atom displacements constitute a common 
homogeneous deformation. An explanation of the observed high indices of the habit plane of 
martensite of certain carbon contents is advanced. 

1. Introduction 

The transformation from austenite to martensite is an 
example of a phase change occurring, not by the usual 
nucleation and growth processes, but by a homo- 
geneous deformation of the crystal structure of the 
original phase to produce that  of the final phase. The 
characteristics of transformations of this kind are that, 
immediately the appropriate conditions (temperature, 
pressure, etc.) are set up, discrete macroscopic regions 
of the original structure deform by an Umklappung or 
'clicking-over' process and the new structure is 
established. From the point of view of visual obser- 
vation the phase change of any individual trans- 
formation unit occurs instantaneously, although the 
deformation must presumably propagate through the 
region at a finite speed. Mechanical twinning is an 

example of a phase change of this general type, the 
special characteristic of which is that  the original and 
final structures differ only in orientation. 

Austenite and martensite are essentially dilute inter- 
stitial solutions of carbon in the face-centred cubic and 
body-centred cubic forms of iron respectively. The 
transformation from austenite to martensite is there- 
fore best discussed by considering first a hypothetical 
similar transformation between the corresponding 
phases in pure iron, and then dealing separately with 
the slight modifications caused by the dissolved carbon 
atoms. I t  should be emphasized that  this treatment is 
adopted for theoretical simplicity only, and that  the 
corresponding phase transformation in pure iron does 
not occur by a deformation process but by nucleation 
and growth. 
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A definite orientation relation exists between the 
original and final structures in any phase change which 
occurs by a crystallographic deformation process. For 
the transformation from austenite to martensite the 
orientation relation has been experimentally established 
by Kurdjumow & Sachs (1930) and by Wasserman 
(1935). A {111} plane of austenite is parallel to a {110} 
plane of martensite, and, in these two parallel planes, a 
< 110 > direction of austenite is parallel to a < 111 > 
direction of martensite; the indices are referred to the 
usual orthogonal axes for face-centred cubic and body- 
centred cubic structures respectively. This lattice re- 
lationship admits of twenty-four crystallographically 
equivalent variants; in this paper only one of these is 
explicitly treated, but it can be shown that equivalent 
results would be obtained if any other of the possible 
orientation relations were selected. In practice only one 
orientation relation is found in a single transformation 
unit, but all of the possible variants may occur in 
different transformation units within the same bulk 
specimen. 

The form of the region within an austenite grain to 
which a single Umklappung process will extend is, in 
general, plate-like, so that  the transformation units are 
seen as needle-shaped traces in any arbitrary section 
chosen for microscopic examination after the phase 
change is complete. The trace of the habit plane itself 
appears as a prominent central straight line in the 
martensite needle, as is illustrated in Fig. 1; this is 
generally referred to as a midrib. By observation of 
this trace of the habit plane for a single martensite 
plate in two or more different plane sections the crystal- 
lographic orientation of the habit plane can be deter- 
mined. Greninger & Troiano (1940) have found that  
the plane can be described as {259}7 for steels containing 
more than 1.4 % carbon, and as {225}7 for steels con- 
taining from 0.55 to 1.4 % carbon. (The suffix 7 refers 
to the fact that  the indices are given relative to the 
reference axes used for the austenite or 7 structure; 
the suffix c¢ will similarly be used for indices referred to 
the martensite axes.) In steels containing less than 
about 0.55 % carbon martensite transformation units 
are needle-shaped rather than plate-like, but as the 
needles themselves tend to group in plate-like arrays 
which delineate {lll}v planes, this can be considered 
as defining a habit plane of martensite for these low- 
carbon steels. 

Many attempts have been made to develop a simple 
pictorial description of the mechanism of the trans- 
formation from austenite to martensite. Bain (1924) 
first pointed out that, as illustrated in Fig. 2, a 
face-centred cubic structure can be alternatively con- 
sidered as being built up from body-centred tetragonal 
units, and therefore that  three mutually orthogonal 
simple strains could transform it to a body-centred 
cubic or body-centred tetragonal structure of any 
required structure cell size. Kurd]umow & Sachs pro- 
posed a mechanism for the transformation from 

austenite to martensite which was designed to account 
for the orientation relation which they had observed 
between the two structures; this consisted of a shear of 
one of the {111} austenite planes by 19 ° 28', followed by 
a second smaller shear within that  plane, and finally by 
minor dimensional adjustments. This mechanism ac- 
counted satisfactorily for the orientation of the marten- 
site relative to the parent austenite, but not ibr the 
observed irrational habit plane of martensite plates. 
Greninger & Troiano, as a result of measurements of 
the relief effects produced on free surfaces in austenite 
by the transformation of single martensite plates, pro- 
posed a transformation mechanism in which a homo- 
geneous shear occurred on the plane of the martensite 
plate, a second smaller shear followed which was not 
homogeneous but occurred stepwise in units much 
smaller than that  of the martcnsite plate, and final 
dimensional adjustments completed the structural 
change. 
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Fig. 2. Body-centred tetragonal lattice delineated in austenite 
(face-centred cubic) structure. (After Bain (1924).) 

In effect, all postulated transformation mechanisms 
of this kind arbitrarily prescribe paths for the atoms in 
moving from their initial to their final positions. The 
actual paths must be very much more complex than 
the simple straight-line sequences which have been 
suggested, since they are determined by considerations 
of the potential-energy functions between the two sets 
of positions. Furthermore, we have no experimental 
evidence about the paths, but are only able to observe 
the original and final positions of the atoms. In the 
present treatment, -therefore, no consideration is given 
to the atomic paths, but a unique correspondence is set 
up between the positions of the atoms in the austenite 
and martensite structures. This is done by determining 
the relative orientation of the two phases from the 
experimentally observed lattice relationships, and by 
making use of the assumption that  of all the possible 
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Fig. 1. Martensi te  and austeni te  in 1.78 ~/o carbon steel. × 1000. 
(After Greninger & Troiano (1940).) 

[To face p. 217 
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distortions of a primitive unit cell of the face-centred 
cubic structure, which could generate a body-centred 
cubic structure of the given relative orientation, the one 
which actually occurs is the smallest. This purely 
mathematical  t reatment  is an approach to the marten- 
site transformation which is at  once more general and 
more powerful than any of the necessarily arbi t rary 
crystallographic descriptions. 

2.  D i s c u s s i o n  o f  m a t h e m a t i c a l  m e t h o d s  

The discussion of the atomic displacements in the trans- 
formation from austenite to martensite will be largely 
concerned with the relationship between various rect- 
angular axis-systems, because to establish a unique 
correspondence between individual atomic sites in the 
two structures we must be able to talk about both sets 
of atomic positions with reference to a common system 
of reference axes, and at  the moment we know the 
arrangement of atomic co-ordinates in both structures 
only relative to the ordinary crystallographic axes to 
which they are normally referred. We must therefore 
develop a method for translating atomic co-ordinates 
known relative to one of the axis-systems into terms of 
the other axis-system, or, alternatively, we could trans- 
late both into terms of a third independent system of 
axes of reference. 

For the t reatment  of relationships between different 
systems of axes of reference, the symbolism and pro- 
perties of matrices offer a natural  means of expression. 
Thus consider two rectangular axis-systems P and Q. 
I f  a point had co-ordinates 

(x~, y~, %) in P and (xq, yq, zq) in Q, 

then, by  the well-known formulae for transformation of 
axes, 

, xq = lx xv + m~ yv  + nx z~,, 

yq = 12 x v  -~ m 2 y r  + n 2 z~, , wf (1) 

zq = 13X ~ + may ~ + n3z ~ , )  

where 11 is the cosine of the angle between OXq and 
OXv,  m 1 is the cosine of the angle between OXq and 
0 Y~, and similarly for the other terms. 

In  these equations the array of cosine terms will be 
the same for all points such as (xr, yv, z~), and is, in 
fact, the characteristic invariant feature of the axis 
transformation itself. I t  is therefore convenient to 
separate it from the variables, i.e. the co-ordinates such 
as xv, yv, etc., and to represent (1) in the purely 
symbolic form 

12 m 2 n 2 x ( l a )  

z l 3 m 3 n 3 z ~" 

The array of cosine terms in the second bracket of 
equation (la),  which is called the matrix of the axis 
transformation from axes P to axes Q, completely 
defines the relative orientation of the axes Q to P.  

Following Dirac, an array of this type may  be abbre- 
viated to (Q/.P). 

The convenience of the matr ix notation is tha t  there 
are simple rules for the independent mathematical  
t reatment  of matrices. For example, if R is a third axis- 
system, whose orientation is known relative to Q, i.e. 
we know tha t  

(R/Q)= L~. 3/2 N2 , 
is M s  N a  

then the matr ix of the transformation from axes P to 
axes R is given as the matrix product of the two inter- 
mediate axis transformations, i.e. 

( R / P ) = ( R / Q )  x (Q/P) (L1 N1)(1. 
= 5 2 M 2 N 2 x l 2 m 2 n 2 

i 3  M s  N a  l a ms  n 3 

L1 ll q- M 112 -t- N 113 \ 

L1 ml + M1 m2 q- N 1 m 8 

/ L 211 + M912 + N 218 L1 nl + M1 n~ + N 133 

= L 2 m  1 + M 2 m 9  + N 2 m 3  . 

~ L s 11 + M 3 l~ + N 313 L2 nl + M2 n2 + N2 33 1 

L3 m l  + M S m 2 q- 1~ 3 m 3 / 
Lan 1 + Man 2 + N a n a /  

The use of matrices is not confined to axis trans- 
formations. Matrices of all types of linear trans- 
formations have similar properties and are extensively 
used in the text.  

3. R e l a t i v e  o r i e n t a t i o n  o f  a u s t e n i t e  a n d  m a r t e n s i t e  

"The validity of the Kurdjumow-Sachs lattice relation- 
ship is a prime assumption of the present t rea tment  of 
the transformation from austenite to martensite. For 
detailed discussion we shall select a single one of the 
twenty-four possible variants of this relationship, the 
particular one chosen being 

(111)~, I[ (101)~, [1T0]~ 11 [111]~. (3) 

As mentioned earlier, we shall assume in the first 
instance tha t  we are dealing with a hypothetical  
martensite-type reaction between the 7' and a forms of 
pure iron, and so we can for the moment neglect the 
tetragonali ty of martensite and assume tha t  in both 
structures directions are normal to planes of the same 
indices. We can then express relation (3) alternatively 
by the parallelism of the three pairs of directions 

(a) [111]~, l[ [101]~ ...... I ~ , ]  

(b) [1T0]y II [llT]a I v ' f  (4) (c) []~2]~11 [~]= zx. 
Relation (a) holds because the two directions mentioned 
are normal to planes which are themselves parallel, 
relation (b) comes directly from the lattice relationship 
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in equat ion (3), and relat ion (c) follows because Ix is 
perpendicular  to both I~ and  Iz and  mus t  therefore be 
uniquely  defined in direction. 

The three directions I x, I~, Iz form a convenient  
in termedia te  rectangular  f rame of reference I,  the  
relations of which to the usual  austenite  cube axes A, 
and  the mar tens i te  cube axes M, are known from the 

Iv 

Fig. 3. Re la t ion  b e t w e e n  the  aus ten i te  cube  axes  A and  the  
la t t ice-re la t ionship  axes  I .  

Fig.  4. Re la t ion  b e t w e e n  the  mar t ens i t e  cube axes  M and  
the  la t t ice-re la t ionship  axes  I .  

indices specified on the left- and r ight -hand sides 
respectively of relat ion (4). The relation between 
axes ] and axes A is i l lustrated in Fig. 3, and tha t  
between axes I and  axes M in Fig. 4. From the 
indices of the xr axes relat ive to the A and  M axes 
the corresponding direction cosines m a y  be directly 
evaluated,  and so the axis- t ransformat ion matrices 
from axes A to axes I and  from axes M to axes I can be 
determined.  F rom these two matrices the mat r ix  of the 
axis t ransformat ion from axes A to axes M is then  
obtained by  mat r ix  mult ipl icat ion:  

(MIA)=(MII).(I/A) 

i.e. (M/A)= ~ + ~ 2 + ~/g . (5) 

1 + 24-  +4-6/ 

In  (5) we have establ ished in ma thema t i ca l  form a 
direct relat ion between the  A and M axis-systems such 
that ,  given the  co-ordinates of a point  relat ive to either 
of them,  we can determine its co-ordinates relat ive to 
the other axis-system. At this  stage we m a y  prof i tably 

\ 

/ 

\ /[/ r, oojo  

[loo]~, 

Fig.  5. S te reogram i l lust ra t ing the  re la t ive or ien ta t ion  of  the  
aus ten i te  (7) cube  axes,  the  mar t ens i t e  (a) cube  axes, and  
the  la t t ice-re la t ionship  axes.  

state the  assumptions which have been made  in 
establishing this relation; these are: 

(1) The orientat ion relation between the original and  
final structures is tha t  specified in (3). 

(2) The origins of co-ordinates for the axis-systems A 
and M are coincident. 

Using these same assumptions,  the same relat ion as 
is given in equat ion (5) can be developed stereo- 
graphical ly;  a stereogram showing the relat ion of both 
axes I and axes M to axes A is given in Fig. 5. 
For the purposes of the present  paper, however, the 
mathemat ica l  expression of the axis relat ion given in 
equat ion (5) is the more useful one. 

We now wish to use equat ion (5) to refer to axes M 
the co-ordinates of an atomic site known relat ive to 
axes A. Consider, for example,  the atomic site 

(xa, ya, za).~, 

where x, y, z "are co-ordinate numbers ,  a the latt ice 
parameter  of austeni te  for zero carbon content  
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( a=  3-564 A.), and the subscript A indicates the 
system of reference. I f  the co-ordinates of this same 
atomic site relative to axes M are (xa,  y~z, Za)M , where 
x, y, z are co-ordinate numbers, a is the lattice para- 
meter of martensite extrapolated to zero carbon con- 
tent  (a=2.860 A.) and the subscript M refers to the 
axis-system, then the following relation holds: 

t (xa) y~z = ( M / A ) .  ya . (6) 

\ z a  / ..ll \ z a  / A 

The relation expressed in (6) is one between co- 
ordinates; it will be more convenient to rewrite this so 
as to express the relation between co-ordinate numbers. 
We obtain (x) (x) 

_a__ ( M / A ) .  y , (7) Y --  • 

z i'll Z A 

and the matrix a a ( M / A )  is evaluated as 

0"810 0.208 0.924\ 
0"924 0-093 i)-//31]. 
0.20s 1.225 0.093~ 

Using this matrix, w@ can, by equation (7), refer to 
axes M the co-ordinate numbers of any atomic site 
whose co-ordinate numbers are known relative to 
axes A. 

4. Atomic displacements 

The co-ordinates of an atom in austenite, relative to 
axes A, are of the form (½nla , ½n2a , ~naa)A , where 
n~, ng., n 3 are integers. Because the structure is face- 
centred cubic the integers must satisfy the condition 
tha t  n l + n ~ . + n  8 is even. In martensite, atonfic co- 
ordinates referred to axes M are of the form 

(~v~, ~ ,  ~ ) M ,  
where vl, v2, v a are integers, and, because the structure 
is body-centred cubic, the three integers must all be 
like, i.e. either all even or all odd. 

We now wish to consider the atomic displacements 
involved in generating the martensite structure from 
austenite, and we assume tha t  these must constitute 
a homogeneous deformation of the entire structure. 
Such a homogeneous deformation is completely defined 
if we determine the displacements of the atoms con- 
st i tuting a primitive unit  cell in austenite. We select 
for consideration the primitive cell effectively defined 
by the four atoms whose co-ordinate numbers are 

(0, 0, 0)4, (½, ½, 0)~, (~, 0, ½)A, (0, ½,~.~)~. 

By using the relation expressed in (7) we can deter- 
mine the co-ordinate numbers of these four atoms 

relative to the martensite axes of reference. These are 
as follows: 

(O'O'O)A~--(O'O'O)M' ! 
(½, ½, 0)A--(0.301, 0.416, 0"717)M, 

(S) 
(½, 0, ½)A = (0"867, 0"047, 0"151)M, [ 

! 

(0, ½, ½)A --- (0.358, 0.462, 0.659)M. j 

I t  should be emphasized tha t  (8) expresses only a 
transformation to the M reference axes, and tha t  we 
have not yet  considered any displacements of the 
atoms. 

We know tha t  when the transformation to marten- 
site occurs the co-ordinate numbers relative to axes M 
of the four gtoms under consideration must  change 
from those given on the right-hand side of (8) to co- 
ordinate numbers of the type (½v 1, ½v 2, ½va), where 
v 1, v 2, v a are like integers. We have to identify the 
particular sites of this type to which the atoms in 
question move. We shall assume that ,  of the many  
possible distortions of a primitive unit  cell of austenite 
by which the martensite structure could be generated, 
the one which actually occurs is the smallest. This is 
equivalent to stating tha t  the four atoms which we are 
considering will move on transformation from the 
positions indicated on the right-hand side of (8) to the 
nearest available atomic sites on the martensite lattice. 
We can therefore immediately identify the displace- 
ments of the four atoms in question as being 

(0, 0, 0)M-> (0, 0, 0)M ,] 

(0"301, 0"4i6, 0"717)M-~ (½, ½, ½)M,~" 
(9) 

(0.867, 0.047, 0 - 1 5 ] ) M - - >  ( l  , 0,  0 ) M , ]  

(0-358, 0 - ~ ,  0"659)M-> (½, ~, 1)M,  ) " 

or, expressing the same atomic displacements as from 
integral initial positions relative to axes A to final 
positions relative to axes M, 

(0, 0, 0)4-> (0, 0, 0)M,] 
! 

(½, ½, o b  ~(½, ½, ½)~,~ 
(½, O, ½)~-> (1, O_ O)M, [ (10) 

(0, ½, ½)~-~ (½, ½, ½)M3 

The correspondence in (10) between the initial 
positions referred to axes A, and the final positions 
referred to axes M, of the four atoms defining a 
primitive unit  cell can be expressed alternatively by 
a linear relation of the type (x) 

y =(r) .  y , (11) 
Z M \ Z / A  

where T is the matrix of a relation which involves change 
of axis, change of lattice parameter, and transforma- 
tion displacement. This relation given in (11) applies 
to the movement of every atom, since the deformation 
is homogeneous. The components of the matr ix "1" can 
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be de termined by  solving (11) for the points whose 
t ransformat ion  displacements  have a l ready been de- 
termined,  and are listed in (10). We obtain 

"r----- 0 . 

1 

We can verify the general i ty of the mat r ix  7 by  
applying it to the general  co-ordinate form of the face- 
centred cubic structure,  i.e. to (½-n t , ½n 2 , ½n3) A , where 
n 1 + n 2 + n a is even. We have 

[½nl\ nl+ 
~'xl½-n2~ =3 nl--n3 

\ ½nJ ~ n2 

:Now n l+n  3 and n l - n  3 are like integers, and, since 
n 1 + n~ + n 3 is even, n 1 + n 3 and ne are like, i.e. 

1-n  • 

n2 \½P3] M 

This verifies tha t  the mat r ix  T defines the relation 
between co-ordinate numbers  in the two structures. 

We m a y  note tha t  T could have been derived directly 
from (7) as the nearest  integral  mat r ix  to the mat r ix  

a (M/A), since it is obvious tha t  as it has to connect 

integral  co-ordinate numbers  its components them- 
selves mus t  be integral.  

5. The tetragonal axis in martensite 

So far, the  te t ragonal i ty  of mar tens i te  has been 
neglected; however, this  is very small  (c/a is never 
greater t h a n  1.07) and  so does not  affect the com- 
ponents of T as previously derived. If, for example,  M, 
is assumed to be the unique axis, then  (6) becomes 
modified to 

y~ = ( M / A ) ~ .  ya , (aa) 

ZC M \ za 1.,4 

where the ma t r i x  (M/A)e/~ depends on the axial  ratio 
of the mar tens i te  and so on the carbon content  of the 
steel under  consideration. 

On incorporat ing the latt ice parameters  into the 
mat r ix  we obta in  the analogue of (7), 

(:) <i) = ( M / A / ; / ~ .  y . (7a/  

Z ~ I  .4 

For all ranges of carbon content,  the  nearest  integral  
mat r ix  to (M/A)'#a is still T; similar results are obtained 
if  M x or My is assumed to be the unique axis. 

The question as to which of the mar tens i te  axes 
becomes the unique axis is decided by  the original 
assumpt ion  of a par t icular  latt ice relat ionship between 
the original and  final phases, eight of the possible 

relations giving rise to a s tructure with Mx as the tetra- 
gonal axis, eight giving M~ and  eight Mz. To ident i fy  
the unique axis for the par t icular  latt ice relat ionship 
which we have assumed, we consider the movement  of 
the carbon atoms. In  austeni te  the carbon a tom sites 
form a face-centred cubic latt ice which interpenetrates  
tha t  of the iron atoms (Petch, 1942), and in mar tens i te  
they  form a body-centred tetragonal  latt ice interpene- 
t ra t ing tha t  of the iron atoms (Petch, 1943). This 
relation between the ini t ial  and final ar rangements  of 
the carbon atoms is most readily explained if  we assume 
tha t  they undergo the same homogeneous deformat ion 
as the iron atoms, i.e. tha t  the final position referred to 
axes M of any  carbon atom is derived from its ini t ial  
position referred to axes A by the operation of the 
mat r ix  T. 

On the basis of this assumption,  any  carbon atom 
whose original co-ordinates are known can be assigned 
final co-ordinates relat ive to axes M, and the form of 
the co-ordinates in M identifies the tetragonal  axis 
immedia te ly  because it is known from the work of 
Perch (1943) tha t  the carbon atoms are s i tuated at the 
midpoints  of the long edges of the tetragonal  uni t  cells. 

The general co-ordinate form of a carbon a tom site 
in austenite  is (½-n I + 1 ,  1 1 ~n2 + ~, ½n3 + ½)A- This is trans- 
ferred by the operation of z to 

+ 0 , 

\½n z + . ~ \ ½ n J A  ~. A \½~'31 M ½ M 

i.e. any  carbon a tom site in mar tens i te  is obtained by  a 

t ransla t ion vector from any  iron atom. I f  the 

g ./11 

iron atom is at  the corner of a cube, then  the corre- 
sponding carbon site is half-way along a cell edge in the 
3I ,  direction; if  the iron a tom is in the body-centred 
position, then  the carbon site is at  the face centre of a 
face perpendicular  to the  3 / ,  direction. In  either ease, 
the 21//, axis is immedia te ly  dist inguished as the unique 
te t rad axis for the par t icular  ease we are considering. 
We see, therefore, tha t  the te t ragonal i ty  of mar tens i te  
arises as a necessary consequence of the assumpt ion  
tha t  the displacements  of the iron and carbon atoms 
consti tute a common homogeneous deformation.  

I t  m a y  be noted, by  reference to the stereogram, tha t  
the unique axis coincides very  closely, with a co- 
ordinate axis of the face-centred cubic structure,  and 
this provides a simple method  for ident i fying it. 

6. Calculation o f  the transformation strain 

We have dealt  so far with matrices which t ransform 
atomic co-ordinates or co-ordinate numbers  from one 
axis-system to another.  To derive an expression for the 
magni tude  of the  atomic displacements  during the 
t ransformat ion  we mus t  consider the ini t ial  and  final 
positions of the  atoms relat ive to the same system of 
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co-ordinates. Thus ff (xa, ya, za)x and (x' a, y' a, z' a)z are 
the original and final positions respectively of an atom 
referred to axes I (which are convenient for our present 
purpose), there is a relation between them of the form 

( x' a~ (1 +o'xx o-xv 
yta~ = o" w 1 +o'vv 

z' a ] I °'zx °'zu 

o'~ . ya , (12) 

1 +o'=1 \ z a l ~  

where the matrix ¢, which refers only to atomic move- 
ments, is called the strain matrix. 

In  order to evaluate ¢ from (12) we proceed as 
follows, 

The co-ordinates referred to axes A of the point 
(xa, ya, za)z /~re given by (xa) (xa) 

ya = ( A / I ) .  ya , 

za A \ z a  / i 

(13) 

where (A / I ) ,  the matrix of the axis transformation 
from axes I to axes A, is obtained from the reverse 
axis transformation ( I /A )  which has already been 
evaluated, by  simple interchange of rows and columns. 

The co-ordinate numbers of the atom referred to 
axes A are thus known; by operating with the matrix 7 
we can obtain from these the co-ordinate numbers of 
the atom relative to axes M after the phase trans- 
formation has taken place, since (x) (x) 

y' = ' r .  y . 

Z~ M Z 

(14) 

The final co-ordinates of the atom referred to axes I ,  
(x'a, y'a, z'a)x, are now obtained by the further axis 
transformation ( I / M )  given by 

x t a~ Ix'or\ 
y'a~ =(I /M)c /~ .  ~y'ot I , 

z ' a ]  I \ z ' c  ] M  

(15) 

or, if we consider co-ordinate numbers only, 

yF =(I /M)c /~ .  , (16) 

Z' I \ Z ' I M  

where (I/M)'cl ~ incorporates the lattice parameters into 
(I/M),t~. 

On combining (13), (14) and (16) we obtain 

y' =(I/M)'~,~ . 7". (A / I )  . , (17) 

Z' I I 

and, on comparing (12) and (17), 
F o'=(I /M)c/ ,  , . 7". (A/ I ) .  (18) 

This equation enables us to evaluate ~ for any 
particular carbon content, since each of the components 

on the right-hand side is known, e.g. for the maximum 
possible carbon content of 1.7 %,  

a=3.607 A., c=3.039 A., a=2 .839  A., c / a = l . 0 7 0 ,  

and the strain matr ix is 

/1.062 0 0-149~ 

o.987 o.215}. 
\ 0 0 0 . 9 9 6 /  

For zero carbon content 

/1"070 0 0"189~ 

\ 0 0 0.983/ 

For carbon contents between the above two limiting 
values, the components of the strain matrix all vary  
continuously with carbon content, and three of these 
components are zero for all compositions. 

7. Properties o f  the strain tensor 

The quant i ty  

S=lo 'y  x o"y~ O'~zl, 
\o'z: c o 'z~ o'zz/ 

known as the strain tensor, represents the magnitude 
of the atomic movements referred to the co-ordinate 
system I.  From the numerical values of ~ it will be 
seen tha t  the components of S are all finite, and hence 
tha t  S has different properties from an infinitesimal 
strain tensor, where the squares and products of com- 
ponents can be neglected in comparison with the 
components themselves. 

Thus it is an important  feature of S tha t  the various 
components or combinations of them have no inde- 
pendent physical significance, as is the case with 
infinitesimal strain. In  particular, S cannot be decom- 
posed into a symmetric tensor and a rigid-body 
rotation. Any decomposition of S is purely formal, 
and has no physical significance. 

I t  is to be observed that ,  for all carbon contents, 

qz~ = (rzv = 0, (19 a) 

~ u = 0 .  (19b) 

Equation (19a) implies tha t  there is no shear in the 
z direction, i.e. tha t  the (111)7 plane of atoms remains 
unchanged in direction during the atomic movements. 
The additional equation (19b) imphes tha t  the [11017 
direction of atoms also remains unchanged in direction. 

I t  follows from the lattice relationships 

(111)7 [I (10l)~, [1T0]~ II [llT]~, 
tha t  the atoms which before transformation constitute 
the (111)7 plane and [1Y0]? direction respectively, are 
the same atoms which after transformation constitute 
the (101)a plane and the [ l l i ]~  direction respectively. 
Kurdjumow & Sachs (1930) implicitly assumed this 
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identity of the atoms which constitute the plane and 
direction which define the lattice relationship, and for 
this reason their picture of the atomic movements is 
consistent with the strain tensor developed above. I t  
will be seen that  in the present treatment, the assump- 
tion of Kurdjumow & Sachs regarding the identity of 
the atoms has been justified rigorously on the basis of 
the assumption of minimum distortion of a unit cell 
in the transformation process. 

8. The habit plane 

The habit plane of the martensite plate has been de- 
fined as the plane delineated by the observable midrib. 
However, as will be observed from Fig. 1, the great 
majority of the surface boundary of the plate is 
parallel to the habit plane, and it is therefore likely that 
surface-energy considerations are responsible for the 
selection of the particular habit plane which is adopted. 

The suggestion is advanced that the selection of the 
plane {225}7 as the habit plane for martensite having 
carbon contents less than 1.4 % is due to the fact that, 
as will be shown, this plane undergoes no change in 
direction during the transformation. If~ is obvious that  
if the boundary plane itself underwent a large change of 
direction during the transformation, large-scale plastic 
distortion would be necessary for the surrounding 
austenite to accommodate the movement, and this 
arrangement of the plate is therefore energetically un- 
favourable. 

The distortion represented by a finite non-symmetric 
strain tensor such as S is, in general, such that  there 
are three planes which do not change in direction 
(proper planes). These three planes are not mutually 
orthogonal and so cannot conveniently be used to 
define a new system of reference axes, although they 
do define three oblique axes along which there are only 
extensions or contractions, these completely specifying 
the transformation. 

Given a particular strain tensor, S, we can identify 
the proper planes as follows. 

Any plane of the original structure is given by the 

equation Ax + By + Cz + D = 0. (20) 

To find the equation satisfied by the points of this plane 
after the transformation has occurred, we substitute 
for x, y, z in terms of x', y', z', where (x, y, z), (x', y', z') 
are related by the strain matrix 0-, i.e. 

y' =0-. , (21) 
Z p 

or rather by (x) = 0  " - 1  , y' , (22) 

where 0--1 is the inverse matrix to 0-. 

On substituting from (22), and on collecting terms, 
(20) becomes 

{(1 + 0-yy)(1 +0-=) A-0-v~(1 +0-=) B} x' 

+(1 +0-x~)(1 +0-=) By' +{-0-=(1 +0-vy) A 

- [0-y~(1 + 0-x~) + 0-x~0-~] B 

+ (1 +0-~,) (1 + 0-y~) C} z '+  D = 0. (23) 

We now wish to introduce the condition that  the plane 
is to remain unchanged in direction during the trans- 
formation, i.e. that  (20) and (23) represent parallel 
planes. The appropriate condition is that  the coeffi- 
cients of x, y, z and x', y', z' in the two equations shall be 
related by the same constant of proportionality, i.e. 
that  if 

(1 + 0-~y) (1 +0-=) A -0-~(1 + 0-~) B =  hA, 1 
! 

then (1 +0-~x) (.1 +0-=) B=AB,~ 

and f (24) 
-0-~,(1 + o'~y) A - [0-~,~(1 +0-~) +0-=0-y~] B 

+ (1 +o'~) (1 +0-~) C =AC. 

For the three equations (24) to be mutually con- 
sistent, the constant of proportionality, 1/, must satisfy 
the cubic equation 

(1 + 0-~,~) (1 +0-=)-,~ 
- 0-~,~(1 + 0-=) 

0 
0 

(1 +0-~)(1 +0-=)-A =0. 
0 

-0-=(1 +0-~) 

- [0-~o(1 + 0-x~) + 0-x~0-y~] 

(1 + 0-a,x)(1 + o"yy) - h 
(25) 

Each of the roots of (25) will therefore determine one of 
the required proper planes on substitution into (24). 

On inserting the numerical values of h into these 
calculations it is found that, for all carbon contents, 
one of the planes which does not change in direction 
during the transformation is the plane (111)7. (This 
result can be seen directly from (19a).) A second 
solution gives, for all carbon contents, a plane lying 
within 1 ° of (111) 7 and becoming coincident with it for 
zero carbon content. The third root for h defines a plane 
which lies within 1½ ° of (225) 7 . 

The fact that  the plane (111)7 remains unchanged in 
direction during the transformation is consistent with 
the observation that  in very low-carbon martensite, in 
which the habit plane is needle-like rather than plate- 
like, the needles group themselves into plates which 
delineate octahedral planes. The third solution provides 
that  the habit plane for higher carbon contents up to 
1.4 % is a plane which undergoes no change in direction. 
Two questions remain outstanding, namely, the reason 
for the choice of the (225}7 habit in preference to an 
octahedral habit, since both have been shown to satisfy 
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the  condit ion of undergoing no directional  change, and,  
secondly, the  condit ion which determines the  occur- 
rence of the  (259)v habi t  in mar tensi te  containing more 
t h a n  1.4 °/o carbon. Fur the r  work on the present lines 
m a y  lead to the  appreciat ion of a more general con- 
di t ion which de te rmines  the habi t  plane, but  it is a t  
least an  interest ing proper ty  of the  habi t  plane over a 
very  wide range of carbon concentrat ions which the 
present  invest igat ion has brought  to light. 

This work is par t  of a research programme under- 
t~ken for the  F.M.I. Committee of the  Brit ish Welding 
l~esearch Association under  the direction of Prof. D. 
Hanson.  The authors  wish to t hank  Prof. Hanson for 

his advice and act ive encouragement  and the  Associa- 
t ion for permission to publish this paper.  Their  t hanks  
are also due to Dr A. H. Cottrell  for much valuable  
advice and discussion. 
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Phenanthrene is the parent body of a series of important 
organic compounds, namely, sterols and others, the 
structures and stereochemical pictures of which are still 
the subject of controversy in organic chemistry. I t  is 
also a member of a series of compounds of similar 
structural formulae, e.g. naphthalene, anthracene, chry- 
sene, pyrene, etc., whose structures have already been 
determined. The main difficulty about this substance is 
to obtain single crystals of convenient dimensions. On 
the other hand, it possesses the advantage, in common 
with the above compounds, that  all the atoms of the 
molecule are of the same scattering power (except, of 
course, hydrogen, the scattering power of which may 
fairly be neglected). The most difficult part  of the 
structure determination by the Fourier synthesis method, 
namely, the determination of the signs of Fourier terms, 
can therefore be done by the a.lgebraical method of 
Banerjee (1933). A few tolerably good crystals were 
obtained from a solution of a mixture of acetone and 
alcohol, and hence an at tempt at a complete deter- 
mination of the structure has been undertaken. 

Phenanthrene has previously been studied by Mark & 
Hengstenberg (1929), who found the space group to be 
C~-P21/c with four molecules in the refit cell. We have 
taken rotation photographs about the three crystallo- 
graphic axes and have found the following values for 
axial lengths and angles: 

a=8 .57A. ,  b--6.11A., c=9-47A.,  /?=97 ° 30'. 

There are two molecules per Lmit cell. 
Overexposed photographs about the c axis from very 

clear crystals failed to reveal any faint layer line in 
between the main layer lines as noted by Mark & 

Hengstenberg (1929). Oscillation and Weissenberg photo- 
graphs about the three axes have shown tha t  extinction 
occurs only for odd orders of (0/c0) planes; hence the 
possible space groups are C~-P21 or C~h-P21/m. 

Now since there are two molecules per unit cell, there 
can be only two possible orientations for the phenan- 
threne molecule if the space group is C~P21/m,  the 
existence of a molecular centre of symmetry being 
impossible. One orientation is with the molecular plane 
coincident with the plane of symmetry, in which ease the 
(020) reflexion will be very strong and subsequent orders 
will decrease uniformly but slowly. The experimental 
evidence is against this, the (020) being moderately 
strong, (040) very weak and (060) stronger than (040). 
The only other possible orientation is with the plane of the 
molecule symmetrically at right angles to the plane of 
symmetry. But this arrangement also is not possible 
from steric considerations, asstuning a planar con- 
figuration for the molecule and taking 1.41 A. as the 
C-C distance; the length of the molecule becomes too 
long to be accommodated in the trait cell. From these 
considerations the space group Cgl;-P21/m is discarded 
and the crystal is assigned the space group C~-P21. The 
structure factors of a large number of different planes 
have been determined experimentally, and a complete 
determination of the structure is being at tempted by the 
help of Fourier analysis. 
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